- column(Object, Object) - Static method in class tech.v3.TMD
-
Return the column named cname
else throw exception.
- columnCount(Object) - Static method in class tech.v3.TMD
-
Return the number of columns.
- columnDef(Object, Object) - Static method in class tech.v3.TMD
-
Efficiently create a column definition explicitly specifying name and data.
- columnDef(Object, Object, Object) - Static method in class tech.v3.TMD
-
Efficiently create a column definition explicitly specifying name, data, and missing.
- columnDef(Object, Object, Object, Object) - Static method in class tech.v3.TMD
-
Efficiently create a column definition explicitly specifying name, data, missing, and metadata.
- columnMap(Object, Object, IFn, Object) - Static method in class tech.v3.TMD
-
Map a function across 1 or more columns to produce a new column.
- concatCopying(Object) - Static method in class tech.v3.TMD
-
Concatenate an Iterable of datasets into one dataset via copying data into one dataset.
- concatInplace(Object) - Static method in class tech.v3.TMD
-
Concatenate an Iterable of datasets into one dataset via creating virtual buffers that index into the previous datasets.
- correlationTable(Object, Object) - Static method in class tech.v3.dataset.Modelling
-
Return a map of column to inversely sorted from greatest to least sequence of tuples of column name, coefficient.
- correlationTable(Object) - Static method in class tech.v3.dataset.Modelling
-
Return a map of column to inversely sorted from greatest to least sequence of tuples of column name, pearson correlation coefficient.
- fillRangeReplace(Object, Object, double, Object) - Static method in class tech.v3.dataset.Modelling
-
Expand a dataset ensuring that the difference between two successive values is less than max-span
.
- filter(Object, IFn) - Static method in class tech.v3.TMD
-
Filter a dataset.
- filterColumn(Object, Object, IFn) - Static method in class tech.v3.TMD
-
Filter a dataset.
- first(Object) - Static method in class tech.v3.dataset.Rolling
-
reducer that keeps the first value
- fitCategorical(Object, Object, Object) - Static method in class tech.v3.dataset.Modelling
-
Fit an object->integer transform that takes each value and assigned an integer to it.
- fitCategorical(Object, Object) - Static method in class tech.v3.dataset.Modelling
-
Fit an object->integer transformation.
- fitMinMax(Object, Object) - Static method in class tech.v3.dataset.Modelling
-
Fit a bias and scale the dataset that transforms each colum to a target min-max value.
- fitMinMax(Object) - Static method in class tech.v3.dataset.Modelling
-
Fit a minmax transformation that will transform each column to a minimum of -0.5 and a maximum of 0.5.
- fitOneHot(Object, Object, Object) - Static method in class tech.v3.dataset.Modelling
-
Fit a transformation from a single column of categorical values to a one-hot
encoded group of columns.
- fitOneHot(Object, Object) - Static method in class tech.v3.dataset.Modelling
-
Fit a mapping from a categorical column to a group of one-hot encoded columns.
- fitPCA(Object, Object) - Static method in class tech.v3.dataset.Modelling
-
Fit a PCA transformation on a dataset.
- fitPCA(Object) - Static method in class tech.v3.dataset.Modelling
-
Fit a PCA transformation onto a dataset keeping 95% of the variance.
- fitStdScale(Object) - Static method in class tech.v3.dataset.Modelling
-
Calculate per-column mean, stddev.
- fixedWindow(long) - Static method in class tech.v3.dataset.Rolling
-
Return fixed size rolling window.
- fixedWindow(long, Keyword) - Static method in class tech.v3.dataset.Rolling
-
Return fixed size rolling window.
- fixedWindow(long, Keyword, Keyword) - Static method in class tech.v3.dataset.Rolling
-
Return fixed size rolling window.
- Parquet - Class in tech.v3.libs
-
Read/write parquet files.
- parquetMetadata(String) - Static method in class tech.v3.libs.Parquet
-
- parquetToDataset(String, Object) - Static method in class tech.v3.libs.Parquet
-
- parquetToDatasetSeq(String, Object) - Static method in class tech.v3.libs.Parquet
-
- pmapDS(Object, IFn, Object) - Static method in class tech.v3.TMD
-
Parallelize mapping a function from dataset->dataset across a dataset.
- probabilityDistributionToLabels(Object) - Static method in class tech.v3.dataset.Modelling
-
Given a dataset where the column names are labels and the each row is a probabilitly distribution across the labels, produce a Buffer of labels taking the highest probability for each row to choose the label.
- probCDFS(Object, Object, long) - Static method in class tech.v3.dataset.Reductions
-
Probabilistic CDF calculation, one for each double cdf passed in.
- probCDFS(Object, Object) - Static method in class tech.v3.dataset.Reductions
-
Probabilistic CDF calculation, one for each double cdf passed in.
- probInterquartileRange(Object, long) - Static method in class tech.v3.dataset.Reductions
-
Probabilistic interquartile range.
- probInterquartileRange(Object) - Static method in class tech.v3.dataset.Reductions
-
Probabilistic interquartile range.
- probMedian(Object, long) - Static method in class tech.v3.dataset.Reductions
-
Probabilistic median.
- probMedian(Object) - Static method in class tech.v3.dataset.Reductions
-
Probabilistic median with default K of 128.
- probPMFS(Object, Object, long) - Static method in class tech.v3.dataset.Reductions
-
Returns an approximation to the Probability Mass Function (PMF) of the input stream given a set of splitPoints (values).
- probPMFS(Object, Object) - Static method in class tech.v3.dataset.Reductions
-
Returns an approximation to the Probability Mass Function (PMF) of the input stream given a set of splitPoints (values).
- probQuantile(Object, double, long) - Static method in class tech.v3.dataset.Reductions
-
Probabilistic quantile estimation using default k of 128.
- probQuantile(Object, double) - Static method in class tech.v3.dataset.Reductions
-
Probabilistic quantile estimation using default k of 128.
- probQuantiles(Object, Object, long) - Static method in class tech.v3.dataset.Reductions
-
- probQuantiles(Object, Object) - Static method in class tech.v3.dataset.Reductions
-
Probabilistic quantile estimation using default k of 128.
- probSetCardinality(Object, Map) - Static method in class tech.v3.dataset.Reductions
-
Calculate a probabilistic set cardinality for a given column based on one of three algorithms.
- reducer(Object, IFn, IFn) - Static method in class tech.v3.dataset.Reductions
-
Create a custom reducer.
- reducer(Object, IFn) - Static method in class tech.v3.dataset.Reductions
-
Create a custom reducer.
- reducer(Object, IFn, Keyword) - Static method in class tech.v3.dataset.Rolling
-
Create a columnwise reducer.
- reducer(Object, IFn) - Static method in class tech.v3.dataset.Rolling
-
Create a columnwise reducer eliding datatype parameter.
- Reductions - Class in tech.v3.dataset
-
High speed grouping aggregations based on sequences of datasets.
- renameColumns(Object, Map) - Static method in class tech.v3.TMD
-
Rename columns providing a map of oldname to newname.
- replaceMissing(Object, Object, Object) - Static method in class tech.v3.TMD
-
Replace the missing values from a column or set of columns.
- replaceMissing(Object, Object) - Static method in class tech.v3.TMD
-
Replace missing values.
- reservoirDataset(long) - Static method in class tech.v3.dataset.Reductions
-
Return a reducer that produces a probabilistically sampled dataset of at most nRows len.
- reservoirStats(Object, long, Object) - Static method in class tech.v3.dataset.Reductions
-
Return a reducer which will probabilistically sample the source column producing at most nRows and then call descriptiveStatistics on it with statName.
- reverseRows(Object) - Static method in class tech.v3.TMD
-
Reverse the rows of the dataset
- Rolling - Class in tech.v3.dataset
-
Fixed and variable length rolling windows.
- rolling(Object, Map, Map) - Static method in class tech.v3.dataset.Rolling
-
Fixed or variable rolling window reductions.
- rowCount(Object) - Static method in class tech.v3.dataset.Reductions
-
Returns a rowCount reducer that returns the number of source rows aggregated.
- rowCount(Object) - Static method in class tech.v3.TMD
-
Return the number of rows.
- rowMap(Object, IFn) - Static method in class tech.v3.TMD
-
Map a function across the rows of the dataset with each row in map form.
- rowMap(Object, IFn, Object) - Static method in class tech.v3.TMD
-
Map a function across the rows of the dataset with each row in map form.
- rowMapcat(Object, IFn, Object) - Static method in class tech.v3.TMD
-
Map a function across the rows of the dataset with each row in map form.
- rows(Object) - Static method in class tech.v3.TMD
-
Return the rows of the dataset in a flyweight map format.
- rowvecs(Object, boolean) - Static method in class tech.v3.TMD
-
Return the rows of the dataset where each row is just a flat Buffer of data.
- rowvecs(Object) - Static method in class tech.v3.TMD
-
Return the rows of the dataset where each row is just a flat Buffer of data.
- sample(Object) - Static method in class tech.v3.TMD
-
Return a random sampling of 5 rows without replacement of the data
- sample(Object, long) - Static method in class tech.v3.TMD
-
Return a random sampling of N rows without replacement of the data
- sample(Object, long, Map) - Static method in class tech.v3.TMD
-
Return a random sampling of N rows of the data.
- select(Object, Object, Object) - Static method in class tech.v3.TMD
-
Select a sub-rect of the dataset.
- selectColumns(Object, Object) - Static method in class tech.v3.TMD
-
Select columns by name.
- selectRows(Object, Object) - Static method in class tech.v3.TMD
-
Select rows by index.
- setCardinality(Object) - Static method in class tech.v3.dataset.Reductions
-
Returns a distinct reducer returns the number of distinct elements.
- setCardinalityUint32(Object) - Static method in class tech.v3.dataset.Reductions
-
Returns a distinct reducer that expects unsigned integer values and returns the number of distinct elements.
- setInferenceTarget(Object, Object) - Static method in class tech.v3.dataset.Modelling
-
Set a column in the dataset as the inference target.
- shuffle(Object) - Static method in class tech.v3.TMD
-
Randomly shuffle the dataset rows.
- shuffle(Object, Map) - Static method in class tech.v3.TMD
-
Randomly shuffle the dataset rows.
- sortBy(Object, IFn, Object, Object) - Static method in class tech.v3.TMD
-
Sort a dataset by first mapping sortFn
over it and then sorting over the result.
- sortBy(Object, IFn, Object) - Static method in class tech.v3.TMD
-
Sort a dataset.
- sortBy(Object, IFn) - Static method in class tech.v3.TMD
-
Sort a dataset.
- sortByColumn(Object, Object, Object, Object) - Static method in class tech.v3.TMD
-
Sort a dataset by using the values from column cname
.
- sortByColumn(Object, Object, Object) - Static method in class tech.v3.TMD
-
Sort a dataset by a specific column.
- sortByColumn(Object, Object) - Static method in class tech.v3.TMD
-
Sort a dataset by a specific column.
- stddev(Object) - Static method in class tech.v3.dataset.Rolling
-
stddev reducer
- streamToDataset(Object, Object) - Static method in class tech.v3.libs.Arrow
-
Load an apache arrow streaming file returning a single dataset.
- streamToDatasetSeq(Object, Object) - Static method in class tech.v3.libs.Arrow
-
Load an apache arrow streaming file returning a sequence of datasets, one for each record batch.
- sum(Object) - Static method in class tech.v3.dataset.Reductions
-
Returns a summation reducer that sums an individual source column.
- sum(Object) - Static method in class tech.v3.dataset.Rolling
-
sum reducer
- tail(Object) - Static method in class tech.v3.TMD
-
Return the last 5 rows of the dataset
- tail(Object, long) - Static method in class tech.v3.TMD
-
Return the last N rows of the dataset
- tech.v3 - package tech.v3
-
- tech.v3.dataset - package tech.v3.dataset
-
- tech.v3.libs - package tech.v3.libs
-
- tensorToDataset(Object) - Static method in class tech.v3.TMD
-
Convert a tensor to a dataset such that the columns of the tensor become the columns of the dataset named after their index.
- TMD - Class in tech.v3
-
tech.ml.dataset
is a high performance library for processing columnar data similar to pandas or R’ data table.
- toNeanderthal(Object, Keyword, Keyword) - Static method in class tech.v3.TMD
-
Convert a dataset to a neanderthal 2D matrix such that the columns of the dataset become the columns of the matrix.
- toNeanderthal(Object) - Static method in class tech.v3.TMD
-
Convert a dataset to a neanderthal 2D matrix such that the columns of the dataset become the columns of the matrix.
- toTensor(Object, Keyword) - Static method in class tech.v3.TMD
-
Convert a dataset to a jvm-heap based 2D tensor such that the columns of the dataset become the columns of the tensor.
- toTensor(Object) - Static method in class tech.v3.TMD
-
Convert a dataset to a jvm-heap based 2D double (float64) tensor.
- trainTestSplit(Object, Object) - Static method in class tech.v3.dataset.Modelling
-
Split the dataset returning a map of {:train-ds :test-ds}
.
- trainTestSplit(Object) - Static method in class tech.v3.dataset.Modelling
-
Randomize then split dataset using 70% of the data for training and the rest for testing.
- transformCategorical(Object, Object) - Static method in class tech.v3.dataset.Modelling
-
Apply an object->integer transformation with data obtained from fitCategorical.
- transformMinMax(Object, Object) - Static method in class tech.v3.dataset.Modelling
-
Transform a dataset using a previously fit minimax transformation.
- transformOneHot(Object, Object) - Static method in class tech.v3.dataset.Modelling
-
Transform a dataset using a fitted one-hot mapping.
- transformPCA(Object, Object) - Static method in class tech.v3.dataset.Modelling
-
Transform a dataset by the PCA fit data.
- transformStdScale(Object, Object) - Static method in class tech.v3.dataset.Modelling
-
Transform dataset to mean of zero and a standard deviation of 1.