tech.ml.dataset And nippy
We are big fans of the nippy system for freezing/thawing data. So we were pleasantly surprized with how well it performs with dataset and how easy it was to extend the dataset object to support nippy natively.
Nippy Hits One Out Of the Park
We start with a decent size gzipped tabbed-delimited file.
chrisn@chrisn-lt-01:~/dev/tech.all/tech.ml.dataset/nippy-demo$ ls -alh
total 44M
drwxrwxr-x 2 chrisn chrisn 4.0K Jun 18 13:27 .
drwxr-xr-x 13 chrisn chrisn 4.0K Jun 18 13:27 ..
-rw-rw-r-- 1 chrisn chrisn 44M Jun 18 13:27 2010.tsv.gz
user> (def ds-2010 (time (ds/->dataset
"nippy-demo/2010.tsv.gz"
{:parser-fn {"date" [:packed-local-date "yyyy-MM-dd"]}})))
"Elapsed time: 8588.080218 msecs"
#'user/ds-2010
user> ;;rename column names so the tables print nicely
user> (def ds-2010
(ds/select-columns ds-2010
(->> (ds/column-names ds-2010)
(map (fn [oldname]
[oldname (.replace ^String oldname "_" "-")]))
(into {}))))
user> ds-2010
nippy-demo/2010.tsv.gz [2769708 12]:
| low | comp-name-2 | high | currency-code | comp-name | m-ticker | ticker | close | volume | exchange | date | open |
|-------:|-------------|-------:|---------------|------------|----------|--------|-------:|---------------:|----------|------------|-------:|
| | | | USD | ALCOA CORP | AA2 | AA | 48.365 | | NYSE | 2010-01-01 | |
| 49.355 | | 51.065 | USD | ALCOA CORP | AA2 | AA | 51.065 | 1.10618840E+07 | NYSE | 2010-01-08 | 49.385 |
| | | | USD | ALCOA CORP | AA2 | AA | 46.895 | | NYSE | 2010-01-18 | |
| 39.904 | | 41.854 | USD | ALCOA CORP | AA2 | AA | 40.624 | 1.46292500E+07 | NYSE | 2010-01-26 | 40.354 |
| 40.294 | | 41.674 | USD | ALCOA CORP | AA2 | AA | 40.474 | 1.20107520E+07 | NYSE | 2010-02-03 | 40.804 |
| 39.304 | | 40.504 | USD | ALCOA CORP | AA2 | AA | 39.844 | 1.46702890E+07 | NYSE | 2010-02-09 | 40.084 |
| 39.574 | | 40.264 | USD | ALCOA CORP | AA2 | AA | 39.844 | 1.53728400E+07 | NYSE | 2010-02-12 | 39.994 |
| 40.324 | | 41.104 | USD | ALCOA CORP | AA2 | AA | 40.624 | 7.72947100E+06 | NYSE | 2010-02-22 | 41.044 |
| 39.664 | | 40.564 | USD | ALCOA CORP | AA2 | AA | 39.724 | 1.08365810E+07 | NYSE | 2010-03-02 | 40.234 |
Our 44MB gzipped tsv produced 2.7 million rows and 12 columns.
Let's check the ram usage:
user> (require '[clj-memory-meter.core :as mm])
nil
user> (mm/measure ds-2010)
"121.5 MB"
Now, let's save to an uncompressed nippy file:
user> (require '[tech.io :as io])
nil
user> (time (tech.io/put-nippy! "test.nippy" ds-2010))
"Elapsed time: 1069.781703 msecs"
nil
One second, pretty nice :-).
What is the file size?
chrisn@chrisn-lt-01:~/dev/tech.all/tech.ml.dataset/nippy-demo$ ls -alh
total 95M
drwxrwxr-x 2 chrisn chrisn 4.0K Jun 18 13:38 .
drwxr-xr-x 13 chrisn chrisn 4.0K Jun 18 13:36 ..
-rw-rw-r-- 1 chrisn chrisn 51M Jun 18 13:38 2010.nippy
-rw-rw-r-- 1 chrisn chrisn 44M Jun 18 13:27 2010.tsv.gz
Not bad, just a slight bit larger.
The load performance, however, is spectacular:
user> (def loaded-2010 (time (io/get-nippy "nippy-demo/2010.nippy")))
"Elapsed time: 314.502715 msecs"
#'user/loaded-2010
user> (mm/measure loaded-2010)
"93.9 MB"
user> loaded-2010
nippy-demo/2010.tsv.gz [2769708 12]:
| low | comp-name-2 | high | currency-code | comp-name | m-ticker | ticker | close | volume | exchange | date | open |
|-------:|-------------|-------:|---------------|------------|----------|--------|-------:|---------------:|----------|------------|-------:|
| | | | USD | ALCOA CORP | AA2 | AA | 48.365 | | NYSE | 2010-01-01 | |
| 49.355 | | 51.065 | USD | ALCOA CORP | AA2 | AA | 51.065 | 1.10618840E+07 | NYSE | 2010-01-08 | 49.385 |
| | | | USD | ALCOA CORP | AA2 | AA | 46.895 | | NYSE | 2010-01-18 | |
| 39.904 | | 41.854 | USD | ALCOA CORP | AA2 | AA | 40.624 | 1.46292500E+07 | NYSE | 2010-01-26 | 40.354 |
| 40.294 | | 41.674 | USD | ALCOA CORP | AA2 | AA | 40.474 | 1.20107520E+07 | NYSE | 2010-02-03 | 40.804 |
| 39.304 | | 40.504 | USD | ALCOA CORP | AA2 | AA | 39.844 | 1.46702890E+07 | NYSE | 2010-02-09 | 40.084 |
| 39.574 | | 40.264 | USD | ALCOA CORP | AA2 | AA | 39.844 | 1.53728400E+07 | NYSE | 2010-02-12 | 39.994 |
It takes 8 seconds to load the tsv. It takes 315 milliseconds to load the nippy! That is great :-).
The resulting dataset is somewhat smaller in memory. This is because when we parse a dataset we use fastutil lists and append elements to them and then return a dataset that sits directly on top of those lists as the column storage mechanism. Those lists have a bit more capacity than absolutely necessary.
When we save the data, we convert the data into base java/clojure datastructures
such as primitive arrays. This is what makes things smaller: converting from a list
with a bit of extra capacity allocated to an exact sized array. This operation is
optimized and hits System/arraycopy under the covers as fastutil lists use arrays as
the backing store and we make sure of the rest with tech.datatype
.
Gzipping The Nippy
We can do a bit better. If you are really concerned about dataset size on disk, we can save out a gzipped nippy:
user> (time (io/put-nippy! (io/gzip-output-stream! "nippy-demo/2010.nippy.gz") ds-2010))
"Elapsed time: 7026.500505 msecs"
nil
This beats the gzipped tsv in terms of size by 10%:
chrisn@chrisn-lt-01:~/dev/tech.all/tech.ml.dataset/nippy-demo$ ls -alh
total 134M
drwxrwxr-x 2 chrisn chrisn 4.0K Jun 18 13:47 .
drwxr-xr-x 13 chrisn chrisn 4.0K Jun 18 13:36 ..
-rw-rw-r-- 1 chrisn chrisn 51M Jun 18 13:38 2010.nippy
-rw-rw-r-- 1 chrisn chrisn 40M Jun 18 13:47 2010.nippy.gz
-rw-rw-r-- 1 chrisn chrisn 44M Jun 18 13:27 2010.tsv.gz
And now it takes twice the time to load:
user> (def loaded-gzipped-2010 (time (io/get-nippy (io/gzip-input-stream "nippy-demo/2010.nippy.gz"))))
"Elapsed time: 680.165118 msecs"
#'user/loaded-gzipped-2010
user> (mm/measure loaded-gzipped-2010)
"93.9 MB"
You can probably handle load times in the 700ms range if you have a strong reason to have data compressed on disc.
Intermix With Clojure Data
Another aspect of nippy that is really valuable is that it can save/load datasets that
are parts of arbitrary datastructures. So for example you can save
the result of group-by-column
:
user> (def tickers (ds/group-by-column "ticker" ds-2010))
#'user/tickers
user> (type tickers)
clojure.lang.PersistentHashMap
user> (count tickers)
11532
user> (first tickers)
["RBYCF" RBYCF [261 12]:
| low | comp_name_2 | high | currency_code | comp_name | m_ticker | ticker | close | volume | exchange | date | open |
|--------:|-------------|--------:|---------------|---------------|----------|--------|--------:|---------:|----------|------------|--------:|
| | | | USD | RUBICON MNRLS | RUBI | RBYCF | 759.677 | | OTC | 2010-01-01 | |
| 795.161 | | 827.419 | USD | RUBICON MNRLS | RUBI | RBYCF | 800.000 | 3596.775 | OTC | 2010-01-12 | 816.129 |
| 741.935 | | 779.032 | USD | RUBICON MNRLS | RUBI | RBYCF | 758.064 | 5490.292 | OTC | 2010-01-20 | 779.032 |
| 645.161 | | 688.710 | USD | RUBICON MNRLS | RUBI | RBYCF | 682.258 | 6201.953 | OTC | 2010-01-28 | 669.355 |
| 685.484 | | 725.806 | USD | RUBICON MNRLS | RUBI | RBYCF | 687.097 | 3491.220 | OTC | 2010-02-08 | 714.516 |
| 750.000 | | 783.871 | USD | RUBICON MNRLS | RUBI | RBYCF | 770.968 | 2927.057 | OTC | 2010-02-17 | 780.645 |
...
group-by and
group-by-column` both return persistent maps of key->dataset.
user> (tech.io/put-nippy! "ticker-sorted.nippy" tickers)
nil
user> (def loaded-tickers (tech.io/get-nippy "ticker-sorted.nippy"))
#'user/loaded-tickers
user> (count loaded-tickers)
11532
user> (first loaded-tickers)
["RBYCF" RBYCF [261 12]:
| low | comp_name_2 | high | currency_code | comp_name | m_ticker | ticker | close | volume | exchange | date | open |
|--------:|-------------|--------:|---------------|---------------|----------|--------|--------:|---------:|----------|------------|--------:|
| | | | USD | RUBICON MNRLS | RUBI | RBYCF | 759.677 | | OTC | 2010-01-01 | |
| 795.161 | | 827.419 | USD | RUBICON MNRLS | RUBI | RBYCF | 800.000 | 3596.775 | OTC | 2010-01-12 | 816.129 |
| 741.935 | | 779.032 | USD | RUBICON MNRLS | RUBI | RBYCF | 758.064 | 5490.292 | OTC | 2010-01-20 | 779.032 |
| 645.161 | | 688.710 | USD | RUBICON MNRLS | RUBI | RBYCF | 682.258 | 6201.953 | OTC | 2010-01-28 | 669.355 |
| 685.484 | | 725.806 | USD | RUBICON MNRLS | RUBI | RBYCF | 687.097 | 3491.220 | OTC | 2010-02-08 | 714.516 |
| 750.000 | | 783.871 | USD | RUBICON MNRLS | RUBI | RBYCF | 770.968 | 2927.057 | OTC | 2010-02-17 | 780.645 |
Thus datasets can be used in maps, vectors, you name it and you can load/save those really complex datastructures. That can be a big help for complex dataflows.
Simple Implementation
Our implementation of save/load for this pathway goes through two public functions:
-
dataset->data - Convert a dataset into a pure clojure/java datastructure suitable for serialization. Data is in arrays and string tables have been slightly deconstructed.
-
data->dataset - Given a data-description of a dataset create a new dataset. This is mainly a zero copy operation so it should be quite quick.
Near those functions you can see how easy it was to implement direct nippy support for the dataset object itself. Really nice, Nippy is truly a great library :-).